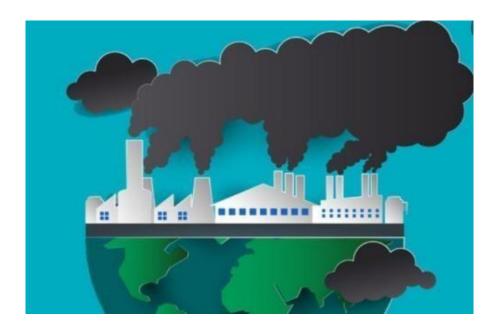


Metodología para calcular las emisiones de Gases de Efecto Invernadero

¿Qué son los Gases de Efecto Invernadero (GEI)?

Son compuestos en estado gaseoso que impiden que la radiación emitida por el sol salga de la atmósfera, ocasionando un aumento en la temperatura de la superficie de la tierra, lo que se conoce como efecto invernadero.

Entre los principales GEI presentes en la atmósfera se encuentran:


- ➤ Metano (CH₄)
- Óxido nitroso (N₂O)
- Dióxido de carbono (CO₂)

¿Cuál es la metodología para calcular las emisiones de Gases de

La establecida en las Directrices del Panel Intergubernamental de Expertos sobre el Cambio Climático (IPCC, por sus siglas en inglés)

Fuente: IPCC 2006. https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/vol2.html https://www.ipccnggip.iges.or.jp/public/2006gl/spanish/pdf/5 Volume5/V5 6 Ch6 Wastewater.pdf

Emisiones Directas

Las emisiones de gases de efecto invernadero generadas por la operación de las fuentes sujetas a reporte.

Es decir, aquellas que se generan en las industrias, comercios y servicios, al utilizar cualquier **combustible** como: Gas Natural, Gas L.P. diésel, leña, carbón, etc), **en sus procesos o actividades**, incluye sus servicios auxiliares (comedor, regaderas y plantas de emergencia) y aquellos que cuenten con plantas de tratamiento de aguas residuales.

Emisiones Indirectas

Las emisiones de gases de efecto invernadero generadas fuera de la operación de las fuentes sujetas a reporte, como consecuencia de sus actividades.

Es decir, aquellas que se generan en las industrias, comercios y servicios, y que no son propias del proceso, como: el consumo de **energía eléctrica**, proporcionada por algún proveedor ejemplo: CFE.

Ejemplo de cálculo de emisiones directas e indirectas de Gases de Efecto Invernadero en la Industria en toneladas de dióxido de carbono equivalente (t CO₂e)

Ejemplo:

Una Industria dedicada a la elaboración de bebidas no gaseosas, emplea gas natural para el proceso de pasteurización para conservar el producto; además para sus servicios auxiliares (utiliza Gas L.P (para el comedor y sanitarios con regadera), Diésel en su planta de emergencia y cuenta con una planta de tratamiento de aguas residuales.

y consume **energía eléctrica**.

Ejemplo:

¿Cuáles son las emisiones directas e indirectas de CO₂, CH₄ y N₂O* en los equipos o actividades que utilicen combustibles, por la planta de tratamiento de sus aguas residuales y por el consumo de energía eléctrica?.

¿Cuánto debo pagar de impuesto por la cantidad emitida de gases de efecto invernadero?

CAUSAS DEL CAMBIO CLIMATICO

- Emisiones de CO₂
- Emisiones de CH₄
- Emisiones de N₂O

* Gases de Efecto Invernadero

- Dióxido de Carbono CO₂
- Metano CH₄
- Óxido Nitroso N₂O

Ecuación para Emisiones Directas por el consumo de combustibles:

Emisión $GEI = CC_i \times FE_{GEI} - - - - - Ecuación 1$

Donde:

Emisión_{GEI} = Emisión del gas de efecto invernadero en toneladas anuales (t)

CC_i = Consumo de combustible i utilizado al año en Tera Joules (TJ)

FE_{GEI} = Factor de emisión para el combustible i para cada tipo de GEI en toneladas de GEI por Tera Joules (t_{GEI}/TJ)

GEI = Gas de efecto invernadero CO₂, CH₄ y N₂O

i = Tipo de combustible (Gas natural, Gas L.P., diésel, entre otros)

SECRETARÍA DE FINANZAS SUBSECRETARÍA DE INGRESOS DIRECCIÓN GENERAL DE RECAUDACIÓN DIRECCIÓN DE ADMINISTRACIÓN TRIBUTARIA

Solución:

Cálculo de las emisiones directas en sus equipos de combustión para su proceso de pasteurización. Las entradas reportadas (dato de actividad = consumo de combustible "Gas Natural") son los siguientes:

Equipo de combustión	Capacidad	Unidad	Horas de operación al mes	Combustible	Cantidad mensual de combustible utilizado ^{a)}	Unidad ^{b)}
Caldera 1 (C1)	700	Caballos Caldera	730	Gas Natural	178,765.0	m³
Caldera 2 (C2)	1200	Caballos Caldera	730	Gas Natural	297,120.0	m³
Caldera 3 (C3)	1200	Caballos Caldera	730	Gas Natural	324,951.0	m³
Caldera 4 (C4)	1500	Caballos Caldera	730	Gas Natural	407,609.0	m ³
					1,208,445.0	m³

a) La cantidad de combustible utilizado se puede obtener de:

b) m³ = metros cúbicos

Como esta en unidades de volumen, se debe convertir a unidades de energía (TJ)

¹⁾ Las facturas de compra de combustible; o bien

²⁾Estimando el consumo utilizando las horas de operación, la capacidad y la bitácora de operación y mantenimiento de cada uno de los equipos generadores de emisiones.

El consumo de combustible del Gas Natural está en unidades de volumen (m³), debe convertirse a unidades de energía (TJ), para su uso en la Ecuación 1.

Equipo de combustión	Combustible	Cantidad total mensual de Combustible utilizado	Unidad	Multiplicar por el Poder calorífico (kJ/m³) ^{c)}	Cantidad consumida por mes (TJ)
Todos (Calderas)	Gas Natural	1,208,445.0	m³	42,103	<mark>50.879</mark>

c) Fuente: SENER/CONUEE La lista de combustibles y sus poderes caloríficos 2021 que se considerarán para identificar a los usuarios de alto consumo, así como los factores para determinar las equivalencias en términos de barriles equivalentes de petróleo.

Para el ejemplo: El dato del Poder Calorífico expresado en kilo joules (kJ) sobre metros cúbicos m³ correspondiente al Gas Natural Asociado, se obtiene en: https://www.conuee.gob.mx/transparencia/boletines/SITE/Lista_de_Combustibles_2021.pdf

* Para obtener el consumo de combustible en unidades de energía (TJ) se multiplica la cantidad total mensual de combustible utilizado en (m³) por el Poder Calorífico (kJ/m³)

Desarrollo de la fórmula del ejemplo: cantidad de combustible consumido = (1,208,445 m³/año)(42,103 kJ/m³) =50,879,159.835 kJ/año, por lo que para expresarlo en (Tera Joules) se divide entre 1,000,000,000.

Por lo que la Cantidad mensual consumida es de: 50.879 (TJ)

para el cálculo de las emisiones

directas

Este dato

se

utilizará

Factor de emisión (FE): es la relación entre la cantidad de contaminante emitido a la atmósfera y una unidad de actividad, (en este caso el factor de emisión esta en función de la actividad que es el consumo de combustible "Gas Natural" utilizado en sus equipos de combustión para su proceso de pasteurización. y que será utilizado para el cálculo de las emisiones directas.

Combustible	Tipo de gas	Factor de emisión (FE) (t/TJ) ^{d)}
	Dióxido de Carbono (CO ₂)	56.1000
Gas Natural	Metano (CH ₄)	0.0010
	Óxido Nitroso (N ₂ O)	0.0001

d) Fuente: IPCC 2006, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K. (eds). Publicado por: IGES, Japón, Volumen 2, Cuadros 2.3 para industria y cuadro 2.4 para comercios y servicios.

Cálculo de las Emisiones directas por sus equipos de combustión para su proceso de pasteurización, en toneladas.

Utilizando la ecuación 1:

Tipo de combustible (i)	Tipo de gas	DA (Cantidad de Combustible utilizado) (TJ/mes)	FE (Factor de emisión) (t/TJ)	Emisión por tipo de gas (Cantidad emitida) (t/mes)
Gas Natural	CO ₂		56.100	2,854.321
	CH ₄	50.879	0.0010	0.051
	N ₂ O		0.0001	0.005

Emisión GEI = CC_i x FE GEI.... Ecuación 1

Por lo que al sustituir los valores en la ecuación 1, se obtienen las emisiones de cada gas de efecto invernadero

Emisión $CO_2 = 50.879 \text{ TJ/mes } \times 56.100 \text{ t/TJ} = 2,854.321 \text{ t/mes}$

Emisión $CH_4 = 50.879 \text{ TJ/mes } \times 0.0010 \text{ t/TJ} = 0.051 \text{ t/mes}$

Emisión N₂O = $50.879 \text{ TJ/mes } \times 0.0001 \text{ t/TJ} = 0.005 \text{ t/mes}$

Este dato se utilizará para el cálculo de el pago del impuesto

Cálculo de las emisiones directas en los servicios auxiliares

Las entradas reportadas, el dato de actividad = consumo de combustible "Gas L.P." utilizado en el (comedor y sanitarios con regadera) son los siguientes:

Equipo de combustión	Capacidad	Unidad	Horas de operación al mes	Combustible	Cantidad mensual de combustible utilizado ^{e)}	Unidad ^{f)}
Estufa	< 15	Caballos caldera	7	Gas L.P.	1.10	m³
Boiler	< 15	Caballos Caldera	35	Gas L.P.	0.12	m³
					1.22	m³

e) La cantidad de combustible utilizado se puede obtener de:

f) m³ = metros cúbicos

Como están en unidades de volumen, se deben convertir a unidades de energía (TJ)

¹⁾ Las facturas de compra de combustible; o bien

²⁾Estimando el consumo utilizando las horas de operación, la capacidad y la bitácora de operación y mantenimiento de cada uno de los equipos generadores de emisiones contaminantes.

SECRETARÍA DE FINANZAS SUBSECRETARÍA DE INGRESOS DIRECCIÓN GENERAL DE RECAUDACIÓN DIRECCIÓN DE ADMINISTRACIÓN TRIBUTARIA

. .

El consumo de combustible "Gas L.P." está en unidades de volumen (m³), debe convertirse a unidades de energía (TJ), para su uso en la Ecuación 1.

Equipo de combustión	Combustible	Cantidad total mensual de Combustible utilizado	Unidad	Multiplicar por el Poder calorífico (MJ/bl) ^{g)}	Cantidad consumida por mes (TJ)
Todos (Estufa y boiler)	Gas L.P.	1.22	m³		0.032

g) Fuente: SENER/CONUEE La lista de combustibles y sus poderes caloríficos 2021 que se considerarán para identificar a los usuarios de alto consumo, así como los factores para determinar las equivalencias en términos de barriles equivalentes de petróleo.

Para el ejemplo: El dato del Poder Calorífico expresado en Mega Joules (MJ) por barril (bl), correspondiente al Gas L.P. Se obtiene en: https://www.conuee.gob.mx/transparencia/boletines/SITE/Lista_de_Combustibles_2021.pdf

- Para obtener el **consumo de combustible** en unidades de energía (TJ) se multiplica la cantidad total mensual de combustible utilizado en (m³) por el **Poder Calorífico** que está reportado en Mega Joules por barril (MJ/ bl)
- Nota de equivalencia: 1 m³ = 6.2898 barriles (bl)

Desarrollo de la fórmula del ejemplo: cantidad de combustible consumido = (1.22 m³/año)* (4,153 MJ/ bl) *(6.2898 bl/m3)= 31,868.28 MJ/año, por lo que para expresarlo en (Tera Joules) se divide entre 1,000,000. Por lo que la **Cantidad mensual** consumida es de: **0.032 (TJ).**

Este dato
se
utilizará
para el
cálculo de
las
emisiones
directas

. .

Factor de emisión (FE): es la relación entre la cantidad de contaminante emitido a la atmósfera y una unidad de actividad, (en este caso el factor de emisión esta en función de la actividad que es el consumo de combustible "Gas L.P." en los servicios auxiliares (utilizado en el comedor y sanitarios con regadera) y que será utilizado para el cálculo de las emisiones directas.

Combustible	Tipo de gas	Factor de emisión (FE) (t/TJ) ʰ)
Gas L.P.	Dióxido de Carbono (CO ₂)	63.1000
	Metano (CH ₄)	0.0010
	Óxido Nitroso (N ₂ O)	0.0001

h) Fuente: IPCC 2006, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K. (eds). Publicado por: IGES, Japón, Volumen 2, Cuadros 2.3 para industrias y cuadro 2.4 para comercios y servicios. https://www.ipcc-ngqip.iges.or.jp/public/2006gl/spanish/vol2.html

Cálculo de las Emisiones directas por el combustible de Gas L.P. utilizado en sus servicios auxiliares (utilizado en el comedor y sanitarios con regadera), en toneladas.

Utilizando la ecuación 1:

Tipo de combustible (i)	Tipo de gas	DA (Cantidad de Combustible utilizado) (TJ/mes)	FE (Factor de emisión) (t/TJ)	Emisión por tipo de gas (Cantidad emitida) (t/mes)
	CO ₂		63.100	2.01
Gas L.P.	CH ₄	0.032	0.0010	0.00003
	N ₂ O		0.0001	0.000003

Emisión GEI = CC_i x FE GEI.... Ecuación 1

Por lo que al sustituir los valores en la ecuación 1, se obtienen las emisiones de cada gas de efecto invernadero

Emisión $CO_2 = 0.032 \text{ TJ/mes } \times 63.100 \text{ t/TJ} = 2.01 \text{ t/mes}$

Emisión $CH_4 = 0.032 \text{ TJ/mes } \times 0.0010 \text{ t/TJ} = 0.00003 \text{ t/mes}$

Emisión N₂O = $0.032 \text{ TJ/mes } \times 0.0001 \text{ t/TJ} = 0.000003 \text{ t/mes}$

Este dato se utilizará para el cálculo de el pago del impuesto

Cálculo de las emisiones directas en los servicios auxiliares

Las entradas reportadas, el dato de actividad = consumo de combustible "Diésel" utilizado en la planta de emergencia: son los siguientes:

Equipo de combustión	Capacidad	Unidad	Horas de operación al mes	Combustible	Cantidad mensual de combustible utilizado ⁱ⁾	Unidad ^{j)}
Planta de emergencia	150	НР	7	Diésel	0.03	m³

i) La cantidad de combustible utilizado se puede obtener de:

- 1) Las facturas de compra de combustible; o bien
- 2)Estimando el consumo utilizando las horas de operación, la capacidad y la bitácora de operación y mantenimiento de cada uno de los equipos generadores de emisiones contaminantes.
- j) m³ = metros cúbicos

Como está en unidades de volumen, se deben convertir a unidades de energía (TJ)

El consumo de combustible "Diésel" está en unidades de volumen (m³), debe convertirse a unidades de energía (TJ), para su uso en la Ecuación 1.

Equipo de combustión	Combustible	Cantidad mensual de combustible utilizado	Unidad	Multiplicar por el Poder calorífico (MJ/bl) ^{k)}	Cantidad consumida por mes (TJ)
(planta de emergencia)	Diésel	0.03	m³		0.0011

k) Fuente: SENER/CONUEE La lista de combustibles y sus poderes caloríficos 2021 que se considerarán para identificar a los usuarios de alto consumo, así como los factores para determinar las equivalencias en términos de barriles equivalentes de petróleo.

Para el ejemplo: El dato del **Poder Calorífico** expresado en Mega joules (kJ) por barril (bl) correspondiente al **Diésel**, se obtiene en: https://www.conuee.gob.mx/transparencia/boletines/SITE/Lista de Combustibles 2021.pdf

- Para obtener el consumo de combustible en unidades de energía (TJ) se multiplica la cantidad total mensual de combustible utilizado en (m³) por el Poder Calorífico que está reportado en Mega Joule por barril (MJ/ bl)
- Nota de equivalencia: 1 m³ = 6.2898 barriles (bl)

Desarrollo de la fórmula del ejemplo: cantidad de combustible **diésel** consumido = (0.03 m³/año)* (5,990 MJ/ bl) *(6.2898 bl/m3)= 1,130.28 MJ/año, por lo que para expresarlo en (Tera Joules) se divide entre 1,000,000.

Por lo que la Cantidad mensual consumida es de: 0.0011 (TJ)

Este dato
se utilizará
para el
cálculo de
las
emisiones
directas

. .

Factor de emisión (FE): es la relación entre la cantidad de contaminante emitido a la atmósfera y una unidad de actividad, (en este caso el factor de emisión esta en función de la actividad que es el consumo de combustible "Diésel" en los servicios auxiliares (utilizado en la planta de emergencia) y que será utilizado para el cálculo de las emisiones directas.

Combustible	Tipo de gas	Factor de emisión (FE) (t/TJ) ^{I)}
Diésel	Dióxido de Carbono (CO ₂)	74.100
	Metano (CH ₄)	0.0030
	Óxido Nitroso (N ₂ O)	0.0006

I) Fuente: IPCC 2006, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K. (eds). Publicado por: IGES, Japón, Volumen 2, Cuadros 2.3 para industria y cuadro 2.4 para comercios y servicios. https://www.ipccnggip.iges.or.jp/public/2006gl/spanish/vol2.html

Cálculo de las Emisiones directas por el combustible "Diésel" utilizado en sus servicios auxiliares (planta de emergencia), en toneladas.

Utilizando la ecuación 1:

Tipo de combustible (i)	Tipo de gas	DA (Cantidad de Combustible utilizado) (TJ/mes)	FE (Factor de emisión) (t/TJ)	Emisión por tipo de gas (Cantidad emitida) (t/mes)
	CO ₂		74.100	0.084
Diésel	CH ₄	0.0011	0.0030	0.000003
	N ₂ O		0.0006	0.0000006

Emisión GEI = CC_i x FE GEI.... Ecuación 1

Por lo que al sustituir los valores en la ecuación 1, se obtienen las emisiones de cada gas de efecto invernadero

Emisión $CO_2 = 0.0011 \text{ TJ/mes } \times 74.100 \text{ t/TJ} = 0.084 \text{ t/mes}$

Emisión CH₄ = $0.0011 \text{ TJ/mes } \times 0.0030 \text{ t/TJ} = 0.000003 \text{ t/mes}$

Emisión N₂O = 0.0011 TJ/mes x 0.0006 t/TJ = 0.0000006 t/mes

Este dato se utilizará para el cálculo de el pago del impuesto

Ecuación para Emisiones Directas provenientes de la planta de tratamiento de aguas residuales:

Ecuación 2:

E_{CH4} = VA_t * DQO * FE_{i CH4} ---- Ecuación 2

Donde:

Emisión_{CH4} = Emisión de metano durante el año de reporte en toneladas (t de CH₄)

VA_t = Volumen de agua tratada en metros cúbicos (m³)

DQO = Demanda Química de Oxígeno a la entrada de la planta de tratamiento en toneladas de DQO por metro cúbico (t DQO/m³)

 $Fe_{i CH4}$ = Factor de emisión del metano por toneladas de DQO del sistema de tratamiento i (t CH_4/t DQO)

i = Sistema de tratamiento i

directas

Cálculo de las emisiones directas en los servicios auxiliares. Por la planta de tratamiento de aguas residuales.

Las entradas reportadas son: el volumen de agua tratada, el valor de la DQO y el tipo de tratamiento) :

	Clasificación	Tipo de tratamiento	DQO m) (toneladas DQO/m³)	Volumen mensual de agua tratada en m³ n)
	Tratamiento secundario	Reactores anaeróbicos	<mark>0.0001297</mark>	48.579
por me	QO = Demanda Química de Oxíge etro cúbico (t DQO/m3) O es la cantidad de materia orgánic	Estos datos se utilizarán para el cálculo de las emisiones		

n) Volumen mensual de agua a tratada (m³ /mes).

Los datos de la DQO y del volumen de agua tratada, los provee el técnico que opera la planta de tratamiento de aguas residuales.

•

Factor de emisión (FE): en este caso el factoí de emisión está en función de la actividad que es el valoí de las toneladas de DQO de agua tíatada y que seíá utilizado paía el cálculo de las emisiones directas en los servicios auxiliares (por el tratamiento de las aguas residuales).

Tipo de tratamiento	Tipo de gas	Factor de emisión (FE) (t CH ₄ / t DQO) ñ)	
Reactores anaeróbicos	Metano (CH₄)	0.200	

ñ) Fuente: IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K. (eds). Publicado por: IGES, Japón, Volumen 5, Capítulo 6, cuadro 6.8.

www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf

Nota: El factor de emisión se obtuvo de IPCC 2006

FE= Bo * MCF

FE= Factor de emisión del metano

Bo= Capacidad máxima de producción de metano, el valor por default es: 0.25 Kg CH4 /kg DQO = 0.25 T CH4 /T DQO MCF= Factor de corrección del metano, para el ejemplo de reactores anaeróbico sin recuperación de metano el valor des de 0.8,

Sustituyendo en la ecuación para obtener el factor de emisión FE= Bo * MCF, FE= 0.25 t CH4 /t DQO * 0.8 = 0.200 t CH4/ t DQO

Cálculo de las emisiones directas en toneladas

Utilizando la ecuación 2:

t	Tipo de ratamiento	Tipo de gas	Volumen mensual de agua tratada en m³	DQO (toneladas DQO/m³)	(t CH ⁴ / t DQO)	Emisión de metano (CH4) (Cantidad emitida) (t/mes)
ag er	olumen de gua tratada n reactores naeróbicos	Metano (CH ₄)	48.579	0.0001297	0.200	0.0013

$$\mathbf{E}_{CH4} = VA_t * DQO * FE_{i CH4} ... ecuación 2$$

Por lo que al sustituir los valores en la ecuación 2, se obtienen las emisiones de metano

 $E_{CH4} = 48.579 \text{ m}^3/\text{mes} * 0.0001297 \text{ t DQO/m}^3 * 0.200 \text{ t CH}_4/\text{ t DQO}) = 0.0013 \text{ t / mes}$

Este dato se utilizará para el cálculo de el pago del impuesto

. .

Ecuación para calcular la Emisión Indirectas, por el consumo de energía eléctrica:

Donde: $E_{CO2e} = CE_e$ x FE_{ce} ---- Ecuación 3

E_{CO2e} = Emisión de dióxido de carbono equivalente proveniente del consumo de energía eléctrica en toneladas de dióxido de carbono equivalente (t CO₂e)

CEe = Consumo de energía eléctrica utilizada al año en Megawatts hora (MWh)

FE_{CE} = Factor de emisión del sistema eléctrico nacional en toneladas de dióxido de carbono por Megawatts hora (t CO₂/MWh)

^{*} El Factor de Emisión del Sistema Eléctrico Nacional, es el que proporciona la Comisión Reguladora de Energía a la SEMARNAT y se publica en la página de la SEMARNAT y se actualiza cada año, el último valor publicado correspondiente al 2021, está disponible en: https://www.gob.mx/cms/uploads/attachment/file/706809/aviso_fesen_2021.pdf

SECRETARÍA DE FINANZAS

SUBSECRETARÍA DE INGRESOS DIRECCIÓN GENERAL DE RECAUDACIÓN DIRECCIÓN DE ADMINISTRACIÓN TRIBUTARIA

Entradas reportadas (dato de actividad = consumo de energía eléctrica) para el cálculo de las emisiones indirectas para su uso en la Ecuación 3 como sigue:

Tipo de energía	Punto de consumo de la energía	Cantidad de energía eléctrica utilizada al mes en (MWh)	
Energía eléctrica	Toda la planta	<mark>5,183.839</mark>	

Dato necesario para el cálculo de las emisiones indirectas

- d) La cantidad de energía eléctrica consumida se puede obtener de: las facturas de energía eléctrica proporcionadas por el proveedor.
- e) MWh = Megawatts hora

Factor de emisión (FE): en este caso el factoí de emisión está en función de la actividad que es el consumo de eneígía eléctíica y que seíá utilizado paía el cálculo de las emisiones indiíectas.

Tipo de energía	Tipo de gas	Factor de emisión (FE) (tCO2e / MWh) º)	
Energía eléctrica	Dióxido de Carbono (CO ₂)	0.423	

o) Fuente: Factor de emisión del Sistema Eléctrico Nacional, proporcionado por la Comisión Reguladora de Energía a la SEMARNAT y es publicado en la página de la SEMARNAT y se actualiza cada año, el último valor publicado correspondiente al 2021, está disponible en: https://www.gob.mx/cms/uploads/attachment/file/706809/aviso_fesen_2021.pdf

Cálculo de las emisiones indirectas en toneladas

Utilizando la ecuación 3:

Tipo	Tipo de gas	Cantidad de energía eléctrica utilizada al mes en (MWh)	FE (Factor de emisión) (tCO2e / MWh)	Emisión por tipo de gas (Cantidad emitida) (t/mes)
Energía eléctrica	CO ₂	5,183.839	0.423	2,192.764

$$E_{CO2e} = CE_e \times FE_{ce}$$
 ---- Ecuación 3

Por lo que al sustituir los valores en la ecuación 3, se obtienen las emisiones de dióxido de carbono

$$E_{CO2e} = 5,183.839 \text{ (MWh/mes)} * 0.423 \text{ tCO2e MWh)}$$

 $E_{CO2e = 2, 192.764 \text{ t/mes}}$

Este dato se utilizará para el cálculo de el pago del impuesto

SECRETARÍA DE FINANZAS SUBSECRETARÍA DE INGRESOS DIRECCIÓN GENERAL DE RECAUDACIÓN DIRECCIÓN DE ADMINISTRACIÓN TRIBUTARIA

Resultado de las emisiones directas e indirectas en toneladas/mes

	Em		s direc nes)	tas	Total de Emisiones	Total de Emisiones indirectas (t/mes)	Emisión Total (directas e indirectas) por	
Tipo de gas	Por sus equipos de combustión para su proceso de pasteurización	Comedor y sanitarios con	rvicios auxilia Planta de emergencia	ares	Directas (t/mes)	Por el In	Gas de Efecto Invernadero (t/mes)	
	Gas Natural	regadera Gas L.P.	Diésel	Planta de tratamiento de aguas residuales		de energía eléctrica		
CO ₂	2,854.321	2.01	0.084		2,856.415	2,192.764	5,049.18	
CH ₄	0.051	0.00003	0.000003	0.0013	0.052		0.052	
N ₂ O	0.005	0.000003	0.0000006		0.005		0.005	

Son las emisiones (CO₂, CH_{4 Y} N₂O) que se deben reportar en el portal de la Secretaría de Finanzas.

Cálculo de las emisiones en toneladas de dióxido de carbono equivalente (t CO2 e) del establecimiento

Tipo de gas	Emisión Total (directas e indirectas) por Gas de Efecto Invernadero (t/mes)	Equivalencias de CO₂ (Potencial de Calentamiento Global)	Emisión total al mes (t CO₂e)	Costo por tonelada emitida (\$)	Total mensual a pagar (\$)
CO ₂	5,049.18	1	5,049.18		\$217,114.74
CH₄	0.052	28	1.456	43	\$ 62.61
N ₂ O	0.005	265	1.325		\$ 56.97
Total			5,051.961		\$217,234.32

^{**} Para este valor se suman las emisiones directas e indirectas (2,856.415+2,192.764) = 5,049.18 t/mes.

Son las emisiones (CO₂, CH_{4 Y} N₂O) que se deben reportar en el portal de la Secretaría de Finanzas.

Potencial de Calentamiento Global (PGG), es la medida relativa que compara un gas de efecto invernadero con el dióxido de carbono como el gas de referencia.

Cantidad de Impuesto a pagar